Verifying Electrical Capacity for New Units

Verifying Electrical Capacity for New Units

Overview of mobile home HVAC systems and their components

When considering the installation of a new HVAC system in a mobile home, one crucial aspect that demands attention is verifying the electrical capacity to support the unit. Mobile home HVAC systems must comply with local building codes Mobile Home Furnace Installation technician. Mobile homes present unique challenges in terms of space and infrastructure, which makes it essential for homeowners and technicians alike to assess whether the existing electrical system can handle the demands of a modern HVAC unit.


Firstly, understanding the power needs of an HVAC system is central to this task. These systems typically require a substantial amount of electricity to operate efficiently, particularly during peak heating or cooling periods. A mismatch between an HVAC system's requirements and a home's electrical capacity can lead to inadequate performance, frequent breaker trips, or even potential safety hazards such as overheating wires or electrical fires.


The initial step in verifying electrical capacity involves examining the main electrical panel to determine its amperage rating. Most mobile homes are equipped with panels rated between 100 to 200 amps. The current draw from all household appliances must be calculated and added up; ideally, this should not exceed about 80% of the panel's total capacity at any given time. If an HVAC system pushes this limit, upgrading the panel may be necessary.


Moreover, it's also important to consider whether there are sufficient circuits available for installing an HVAC unit. Each component of an HVAC system including compressors, fans, and thermostats requires its dedicated circuit breaker for safe operation. A licensed electrician can conduct a thorough assessment to determine if additional circuits need installation or if existing ones are capable.


Another factor influencing electrical requirements is the energy efficiency rating of prospective HVAC units. Modern systems often come with higher SEER (Seasonal Energy Efficiency Ratio) ratings than older models. While these units tend to use less energy overall and provide cost savings on utility bills over time, they might still have specific startup power demands that necessitate careful examination against available electrical supply.


Furthermore, local building codes and regulations frequently stipulate minimum standards for wiring and breaker size when installing new appliances such as HVAC systems in mobile homes. Compliance with these codes is mandatory not only for safety but also for ensuring any future inspections pass without issues.


In conclusion, verifying electrical capacity before installing a new HVAC system in a mobile home is imperative for both operational efficiency and safety assurance. This process involves checking amperage limits on existing panels, ensuring sufficient circuit availability, considering energy consumption relative to unit ratings, and adhering strictly to local building codes. By taking these steps diligently with professional guidance where needed, homeowners can enjoy enhanced comfort without compromising their home's integrity or safety standards.

In the ever-evolving landscape of modern development, one cannot overstate the importance of thoroughly assessing existing electrical infrastructure, especially when considering the integration of new units. As cities expand, technology advances, and energy demands escalate, ensuring that our electrical systems can accommodate these changes becomes crucial. This essay explores the intricacies involved in verifying electrical capacity for new units by assessing current infrastructure.


To begin with, a comprehensive assessment of existing electrical infrastructure is fundamental to avoid potential pitfalls associated with overloading systems. Electrical grids designed decades ago may not be equipped to handle today's sophisticated technologies and increased energy consumption. By conducting a detailed analysis, stakeholders can identify weaknesses within the system that might hinder future expansion or compromise safety. This step is critical in preventing outages or even catastrophic failures that could arise from unanticipated demand on an aging grid.


Additionally, understanding the current capacity involves evaluating components such as transformers, circuit breakers, and wiring systems. Each element plays a vital role in determining whether additional load can be supported without significant upgrades or replacement. For instance, transformers must be analyzed for their ability to manage extra load without overheating or reducing efficiency. Similarly, wiring systems should be inspected for compliance with contemporary standards to ensure they are capable of handling increased power flow safely.


Another essential aspect is regulatory compliance and safety standards. Regulatory bodies set forth guidelines that dictate how much load an infrastructure can bear before it requires upgrades or enhancements. These regulations are designed not only to protect equipment but also to ensure public safety and reliability of supply. Assessing existing infrastructure against these guidelines helps in identifying any necessary modifications required before integrating new units.


Furthermore, technological advancements offer innovative solutions to enhance existing infrastructures' capabilities without total overhaul. Smart grid technologies allow for real-time monitoring and management of electricity distribution networks, offering insights into consumption patterns and areas where efficiency improvements are possible. Investing in such technologies can provide a more accurate picture of available capacity and facilitate better decision-making regarding the addition of new units.


Finally, stakeholder collaboration is key in this process; city planners, utility companies, engineers, and policymakers must work together to develop strategies that balance growth with sustainability and efficiency. Open communication ensures all parties have a clear understanding of objectives and constraints involved in upgrading or expanding electrical infrastructures.


In conclusion, verifying electrical capacity for new units by assessing existing infrastructure is an intricate yet indispensable task in today's rapidly advancing world. It ensures reliability and safety while paving the way for innovation and growth within communities. Through thorough analysis coupled with strategic planning and collaboration among stakeholders, we can successfully navigate challenges posed by increasing energy demands while maintaining robust electric networks fit for future needs.

Overcoming space limitations for HVAC installation in mobile homes

Overcoming space limitations for HVAC installation in mobile homes

In the quest for comfort and sustainability, mobile homes present unique challenges, particularly when it comes to installing HVAC systems.. These compact living spaces require innovative solutions that not only fit within their limited confines but also operate efficiently.

Posted by on 2024-12-28

Addressing weight constraints for rooftop HVAC units

Addressing weight constraints for rooftop HVAC units

In the evolving landscape of modern architecture and building design, one challenge that frequently emerges is addressing weight constraints for rooftop HVAC units.. As buildings strive to achieve a delicate balance between functionality and sustainability, lightweight HVAC systems have emerged as a game-changer in the industry.

Posted by on 2024-12-28

Planning HVAC installations in tight mobile home crawl spaces

Planning HVAC installations in tight mobile home crawl spaces

Installing HVAC systems in the tight confines of mobile home crawl spaces can be a challenging endeavor.. These areas often present unique obstacles that require careful planning and innovative solutions to ensure successful installation.

Posted by on 2024-12-28

Considerations for maintaining structural integrity during HVAC installation

When considering the installation of new HVAC units, a critical step is calculating the load demand to ensure that the existing electrical system can support the additional energy requirements. This process involves assessing both the current capacity and future demands to prevent overloading circuits, which could lead to inefficiencies or even safety hazards.


The first step in verifying electrical capacity is to conduct a thorough assessment of the building's existing electrical infrastructure. This includes examining circuit breakers, wiring systems, and panels to understand their current loads and limitations. It's essential to know the maximum load each component can handle to avoid oversizing or undersizing issues that might compromise system performance or safety.


Once you have a clear picture of your current electrical setup, it's time to calculate the load demand for the new HVAC units. This involves determining their power requirements, typically measured in watts or kilowatts. The specifications for these units should provide details like starting power (the surge required when turning on) and running power (the continuous amount needed during operation).


It's also crucial to consider diversity factors-an understanding that not all equipment runs at full load simultaneously-which can significantly affect total power consumption calculations. By applying diversity factors correctly, you can more accurately estimate realistic power usage scenarios rather than worst-case ones.


Moreover, seasonal variations and peak usage times should be factored into your calculations. HVAC systems often experience higher demand during extreme weather conditions due to increased heating or cooling needs. Ensuring that your electrical capacity calculations account for these peaks will help maintain performance standards throughout seasons.


After estimating these demands, compare them against your existing system's capabilities. If discrepancies arise where demand exceeds supply, you'll need modifications such as upgrading circuit breakers or adding additional wiring paths before installing new units.


In conclusion, calculating load demand for new HVAC units requires careful analysis of both existing infrastructure and anticipated needs. By taking into account various factors like starting/running powers, diversity considerations, seasonal variations along with comparing them against current capacities-you ensure seamless integration without compromising efficiency nor safety standards within any building environment looking towards enhanced climate control solutions through modernized HVAC installations.

Considerations for maintaining structural integrity during HVAC installation

Strategies for evenly distributing weight across the roof when adding or upgrading HVAC systems

Identifying potential upgrades for electrical systems, particularly in the context of verifying electrical capacity for new units, is an essential task that demands careful consideration and planning. As society continues to evolve with technological advancements and increased energy consumption, the need to ensure that electrical systems are capable of supporting new installations becomes increasingly critical. This essay explores the importance of evaluating current electrical capacities and proposes strategies for effectively upgrading these systems to accommodate new units.


At its core, verifying electrical capacity involves assessing whether existing infrastructure can handle additional loads imposed by new equipment or extensions. The process begins with a comprehensive audit of the current system, taking into account factors such as load demand, circuit protection, wiring integrity, and overall system resilience. This assessment is crucial because it identifies potential weaknesses or limitations within the existing setup that could lead to inefficiencies or even failures if left unaddressed.


One of the first steps in identifying potential upgrades is conducting a detailed analysis of energy consumption patterns. By understanding how energy is currently being utilized within a facility, engineers can pinpoint areas where efficiency improvements are possible. For instance, if certain equipment is outdated or consumes excessive power compared to newer models, replacing them with more efficient alternatives can significantly reduce strain on the system and free up capacity for additional units.


Another important aspect involves considering future growth projections. It's not enough to simply address immediate needs; planners must also anticipate future demands that may arise from business expansion or changes in usage patterns. This forward-thinking approach ensures that any upgrades made today will continue to support operational requirements well into the future.


Once these evaluations have been conducted, attention turns towards implementing necessary upgrades. This might involve augmenting existing circuits with higher-capacity wiring or installing advanced circuit breakers capable of handling increased loads without compromising safety standards. In some cases, it may even necessitate upgrading transformers or distribution panels altogether to ensure seamless integration with modern technologies.


Furthermore, embracing smart technology solutions can play a pivotal role in optimizing electrical systems for new units. The adoption of smart meters and sensors enables real-time monitoring of energy usage, providing valuable insights into consumption trends and allowing for more precise load management. With this data-driven approach, facilities can make informed decisions regarding when and how much power should be allocated to different areas.


In conclusion, identifying potential upgrades for electrical systems when verifying capacity for new units is an indispensable process that involves thorough evaluation and strategic planning. By understanding current usage patterns and anticipating future needs while incorporating state-of-the-art technologies where appropriate, businesses can create robust infrastructures capable of supporting their evolving operations efficiently and sustainably over time. Ultimately investing effort upfront pays dividends downline ensuring uninterrupted functionality thereby safeguarding productivity profits alongside peace mind stakeholders alike through reliable resilient energizing environments all around us today tomorrow beyond!

Potential risks of improper weight distribution on mobile home roofs and HVAC efficiency

When embarking on the construction or integration of new units within any infrastructure, one cannot overstate the importance of verifying electrical capacity. This process ensures that the electrical systems are capable of handling the anticipated load without compromising safety or functionality. Safety considerations in this context are pivotal and multifaceted, dictating not only the success of the project but also the well-being of all individuals involved.


At its core, verifying electrical capacity is about understanding and evaluating the limits of an existing electrical system against the demands posed by new installations. This involves a detailed assessment to determine whether current circuits can support additional loads, and if necessary, upgrading components to prevent overloads that could lead to hazards such as fires or equipment failures. A meticulous approach is essential because even minor oversights can lead to catastrophic consequences.


One primary safety consideration is ensuring compliance with relevant codes and standards. Regulatory frameworks such as the National Electrical Code (NEC) in the United States provide guidelines for safe electrical design, installation, and inspection. Adhering to these codes helps mitigate risks associated with overloaded circuits or inadequate grounding practices. Engaging qualified professionals who are familiar with these standards ensures that all aspects of electrical capacity validation are conducted correctly.


Another critical factor involves thorough testing and inspection throughout various stages of implementation. Before introducing any new unit into an existing system, it's imperative to conduct a series of tests to validate that all components function safely under expected operating conditions. Load testing checks whether transformers and circuit breakers can handle increased demands without exceeding their rated capacities, while insulation resistance tests ensure there are no hidden faults that could compromise safety.


Moreover, risk assessment plays a key role in identifying potential hazards related to increased electrical loads. By systematically analyzing scenarios where failures might occur-such as power surges or short circuits-engineers can implement preventive measures like surge protection devices or advanced circuit monitoring systems designed to detect anomalies before they escalate into serious issues.


Lastly, effective training for personnel involved in managing these systems is crucial for maintaining safety over time. Educating staff about safe operational procedures and emergency response protocols enhances their ability to handle unexpected situations promptly and effectively-minimizing risks associated with human error.


In conclusion, verifying electrical capacity for new units involves a comprehensive evaluation focused on safeguarding both infrastructure integrity and human lives. By considering regulatory compliance, conducting rigorous testing, performing thorough risk assessments, and ensuring adequate training levels among personnel-stakeholders can confidently navigate complexities inherent in expanding electrical capacities while prioritizing safety every step along the way.

Guidelines for professional assessment and installation to ensure balanced weight distribution

When considering the installation of new electrical units, whether in a residential setting or a commercial environment, verifying adequate electrical supply is paramount to ensure safety, efficiency, and functionality. This process involves several crucial steps that help ascertain whether the existing electrical infrastructure can support additional load demands without compromising performance or safety.


The first step in verifying electrical capacity is conducting a comprehensive assessment of the current electrical system. This involves examining the main service panel to determine its amperage rating and available circuit slots. Understanding the panel's capacity is essential because it dictates how much additional load it can safely handle. For instance, if you're planning to install high-demand appliances like HVAC systems or electric vehicle chargers, knowing your panel's limits helps prevent overloading and potential hazards such as tripped breakers or fires.


Once the existing system's capacity is clear, the next step involves calculating the anticipated load of the new units. This calculation requires a thorough understanding of each unit's power requirements, typically expressed in watts or kilowatts. By summing up these values and comparing them against your current system's unused capacity, you can determine if your setup can handle the new demand or if an upgrade is necessary.


Another critical step is considering future needs alongside current installations. While an immediate need may be satisfied by existing capacity, planning for future expansions can save time and resources down the line. For example, if there's potential for adding more units later on, it might be wise to upgrade your system now rather than repeatedly revisiting your infrastructure with each new addition.


Additionally, it's vital to review local codes and regulations during this process. Building codes often dictate specific requirements for electrical installations to ensure safety standards are met. Consulting with a licensed electrician or engineer who understands these regulations ensures compliance and avoids legal issues that could arise from non-compliance.


Finally, conducting a professional inspection before proceeding with any installations provides peace of mind and confirms that all calculations and assumptions are accurate. A certified electrician not only validates your findings but also offers expert advice on potential upgrades or modifications needed for optimal performance.


In conclusion, verifying adequate electrical supply when installing new units involves careful analysis of current systems, precise load calculations for proposed additions, foresight regarding future needs, adherence to local regulations, and professional inspections. These steps collectively ensure that any new installation operates safely within its designated environment while providing reliable service without compromising safety standards.

A DuPont R-134a refrigerant

A refrigerant is a working fluid used in cooling, heating or reverse cooling and heating of air conditioning systems and heat pumps where they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are heavily regulated because of their toxicity and flammability[1] and the contribution of CFC and HCFC refrigerants to ozone depletion[2] and that of HFC refrigerants to climate change.[3]

Refrigerants are used in a direct expansion (DX- Direct Expansion) system (circulating system)to transfer energy from one environment to another, typically from inside a building to outside (or vice versa) commonly known as an air conditioner cooling only or cooling & heating reverse DX system or heat pump a heating only DX cycle. Refrigerants can carry 10 times more energy per kg than water, and 50 times more than air.

Refrigerants are controlled substances and classified by International safety regulations ISO 817/5149, AHRAE 34/15 & BS EN 378 due to high pressures (700–1,000 kPa (100–150 psi)), extreme temperatures (−50 °C [−58 °F] to over 100 °C [212 °F]), flammability (A1 class non-flammable, A2/A2L class flammable and A3 class extremely flammable/explosive) and toxicity (B1-low, B2-medium & B3-high). The regulations relate to situations when these refrigerants are released into the atmosphere in the event of an accidental leak not while circulated.

Refrigerants (controlled substances) must only be handled by qualified/certified engineers for the relevant classes (in the UK, C&G 2079 for A1-class and C&G 6187-2 for A2/A2L & A3-class refrigerants).

Refrigerants (A1 class only) Due to their non-flammability, A1 class non-flammability, non-explosivity, and non-toxicity, non-explosivity they have been used in open systems (consumed when used) like fire extinguishers, inhalers, computer rooms fire extinguishing and insulation, etc.) since 1928.

History

[edit]
The observed stabilization of HCFC concentrations (left graphs) and the growth of HFCs (right graphs) in earth's atmosphere.

The first air conditioners and refrigerators employed toxic or flammable gases, such as ammonia, sulfur dioxide, methyl chloride, or propane, that could result in fatal accidents when they leaked.[4]

In 1928 Thomas Midgley Jr. created the first non-flammable, non-toxic chlorofluorocarbon gas, Freon (R-12). The name is a trademark name owned by DuPont (now Chemours) for any chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), or hydrofluorocarbon (HFC) refrigerant. Following the discovery of better synthesis methods, CFCs such as R-11,[5] R-12,[6] R-123[5] and R-502[7] dominated the market.

Phasing out of CFCs

[edit]

In the mid-1970s, scientists discovered that CFCs were causing major damage to the ozone layer that protects the earth from ultraviolet radiation, and to the ozone holes over polar regions.[8][9] This led to the signing of the Montreal Protocol in 1987 which aimed to phase out CFCs and HCFC[10] but did not address the contributions that HFCs made to climate change. The adoption of HCFCs such as R-22,[11][12][13] and R-123[5] was accelerated and so were used in most U.S. homes in air conditioners and in chillers[14] from the 1980s as they have a dramatically lower Ozone Depletion Potential (ODP) than CFCs, but their ODP was still not zero which led to their eventual phase-out.

Hydrofluorocarbons (HFCs) such as R-134a,[15][16] R-407A,[17] R-407C,[18] R-404A,[7] R-410A[19] (a 50/50 blend of R-125/R-32) and R-507[20][21] were promoted as replacements for CFCs and HCFCs in the 1990s and 2000s. HFCs were not ozone-depleting but did have global warming potentials (GWPs) thousands of times greater than CO2 with atmospheric lifetimes that can extend for decades. This in turn, starting from the 2010s, led to the adoption in new equipment of Hydrocarbon and HFO (hydrofluoroolefin) refrigerants R-32,[22] R-290,[23] R-600a,[23] R-454B,[24] R-1234yf,[25][26] R-514A,[27] R-744 (CO2),[28] R-1234ze(E)[29] and R-1233zd(E),[30] which have both an ODP of zero and a lower GWP. Hydrocarbons and CO2 are sometimes called natural refrigerants because they can be found in nature.

The environmental organization Greenpeace provided funding to a former East German refrigerator company to research alternative ozone- and climate-safe refrigerants in 1992. The company developed a hydrocarbon mixture of propane and isobutane, or pure isobutane,[31] called "Greenfreeze", but as a condition of the contract with Greenpeace could not patent the technology, which led to widespread adoption by other firms.[32][33][34] Policy and political influence by corporate executives resisted change however,[35][36] citing the flammability and explosive properties of the refrigerants,[37] and DuPont together with other companies blocked them in the U.S. with the U.S. EPA.[38][39]

Beginning on 14 November 1994, the U.S. Environmental Protection Agency restricted the sale, possession and use of refrigerants to only licensed technicians, per rules under sections 608 and 609 of the Clean Air Act.[40] In 1995, Germany made CFC refrigerators illegal.[41]

In 1996 Eurammon, a European non-profit initiative for natural refrigerants, was established and comprises European companies, institutions, and industry experts.[42][43][44]

In 1997, FCs and HFCs were included in the Kyoto Protocol to the Framework Convention on Climate Change.

In 2000 in the UK, the Ozone Regulations[45] came into force which banned the use of ozone-depleting HCFC refrigerants such as R22 in new systems. The Regulation banned the use of R22 as a "top-up" fluid for maintenance from 2010 for virgin fluid and from 2015 for recycled fluid.[citation needed]

Addressing greenhouse gases

[edit]

With growing interest in natural refrigerants as alternatives to synthetic refrigerants such as CFCs, HCFCs and HFCs, in 2004, Greenpeace worked with multinational corporations like Coca-Cola and Unilever, and later Pepsico and others, to create a corporate coalition called Refrigerants Naturally!.[41][46] Four years later, Ben & Jerry's of Unilever and General Electric began to take steps to support production and use in the U.S.[47] It is estimated that almost 75 percent of the refrigeration and air conditioning sector has the potential to be converted to natural refrigerants.[48]

In 2006, the EU adopted a Regulation on fluorinated greenhouse gases (FCs and HFCs) to encourage to transition to natural refrigerants (such as hydrocarbons). It was reported in 2010 that some refrigerants are being used as recreational drugs, leading to an extremely dangerous phenomenon known as inhalant abuse.[49]

From 2011 the European Union started to phase out refrigerants with a global warming potential (GWP) of more than 150 in automotive air conditioning (GWP = 100-year warming potential of one kilogram of a gas relative to one kilogram of CO2) such as the refrigerant HFC-134a (known as R-134a in North America) which has a GWP of 1526.[50] In the same year the EPA decided in favour of the ozone- and climate-safe refrigerant for U.S. manufacture.[32][51][52]

A 2018 study by the nonprofit organization "Drawdown" put proper refrigerant management and disposal at the very top of the list of climate impact solutions, with an impact equivalent to eliminating over 17 years of US carbon dioxide emissions.[53]

In 2019 it was estimated that CFCs, HCFCs, and HFCs were responsible for about 10% of direct radiative forcing from all long-lived anthropogenic greenhouse gases.[54] and in the same year the UNEP published new voluntary guidelines,[55] however many countries have not yet ratified the Kigali Amendment.

From early 2020 HFCs (including R-404A, R-134a and R-410A) are being superseded: Residential air-conditioning systems and heat pumps are increasingly using R-32. This still has a GWP of more than 600. Progressive devices use refrigerants with almost no climate impact, namely R-290 (propane), R-600a (isobutane) or R-1234yf (less flammable, in cars). In commercial refrigeration also CO2 (R-744) can be used.

Requirements and desirable properties

[edit]

A refrigerant needs to have: a boiling point that is somewhat below the target temperature (although boiling point can be adjusted by adjusting the pressure appropriately), a high heat of vaporization, a moderate density in liquid form, a relatively high density in gaseous form (which can also be adjusted by setting pressure appropriately), and a high critical temperature. Working pressures should ideally be containable by copper tubing, a commonly available material. Extremely high pressures should be avoided.[citation needed]

The ideal refrigerant would be: non-corrosive, non-toxic, non-flammable, with no ozone depletion and global warming potential. It should preferably be natural with well-studied and low environmental impact. Newer refrigerants address the issue of the damage that CFCs caused to the ozone layer and the contribution that HCFCs make to climate change, but some do raise issues relating to toxicity and/or flammability.[56]

Common refrigerants

[edit]

Refrigerants with very low climate impact

[edit]

With increasing regulations, refrigerants with a very low global warming potential are expected to play a dominant role in the 21st century,[57] in particular, R-290 and R-1234yf. Starting from almost no market share in 2018,[58] low GWPO devices are gaining market share in 2022.

Code Chemical Name GWP 20yr[59] GWP 100yr[59] Status Commentary
R-290 C3H8 Propane   3.3[60] Increasing use Low cost, widely available and efficient. They also have zero ozone depletion potential. Despite their flammability, they are increasingly used in domestic refrigerators and heat pumps. In 2010, about one-third of all household refrigerators and freezers manufactured globally used isobutane or an isobutane/propane blend, and this was expected to increase to 75% by 2020.[61]
R-600a HC(CH3)3 Isobutane   3.3 Widely used See R-290.
R-717 NH3 Ammonia 0 0[62] Widely used Commonly used before the popularisation of CFCs, it is again being considered but does suffer from the disadvantage of toxicity, and it requires corrosion-resistant components, which restricts its domestic and small-scale use. Anhydrous ammonia is widely used in industrial refrigeration applications and hockey rinks because of its high energy efficiency and low cost.
R-1234yf HFO-1234yf C3H2F4 2,3,3,3-Tetrafluoropropene   <1   Less performance but also less flammable than R-290.[57] GM announced that it would start using "hydro-fluoro olefin", HFO-1234yf, in all of its brands by 2013.[63]
R-744 CO2 Carbon dioxide 1 1 In use Was used as a refrigerant prior to the discovery of CFCs (this was also the case for propane)[4] and now having a renaissance due to it being non-ozone depleting, non-toxic and non-flammable. It may become the working fluid of choice to replace current HFCs in cars, supermarkets, and heat pumps. Coca-Cola has fielded CO2-based beverage coolers and the U.S. Army is considering CO2 refrigeration.[64][65] Due to the need to operate at pressures of up to 130 bars (1,900 psi; 13,000 kPa), CO2 systems require highly resistant components, however these have already been developed for mass production in many sectors.

Most used

[edit]
Code Chemical Name Global warming potential 20yr[59] GWP 100yr[59] Status Commentary
R-32 HFC-32 CH2F2 Difluoromethane 2430 677 Widely used Promoted as climate-friendly substitute for R-134a and R-410A, but still with high climate impact. Has excellent heat transfer and pressure drop performance, both in condensation and vaporisation.[66] It has an atmospheric lifetime of nearly 5 years.[67] Currently used in residential and commercial air-conditioners and heat pumps.
R-134a HFC-134a CH2FCF3 1,1,1,2-Tetrafluoroethane 3790 1550 Widely used Most used in 2020 for hydronic heat pumps in Europe and the United States in spite of high GWP.[58] Commonly used in automotive air conditioners prior to phase out which began in 2012.
R-410A   50% R-32 / 50% R-125 (pentafluoroethane) Between 2430 (R-32) and 6350 (R-125) > 677 Widely Used Most used in split heat pumps / AC by 2018. Almost 100% share in the USA.[58] Being phased out in the US starting in 2022.[68][69]

Banned / Phased out

[edit]
Code Chemical Name Global warming potential 20yr[59] GWP 100yr[59] Status Commentary
R-11 CFC-11 CCl3F Trichlorofluoromethane 6900 4660 Banned Production was banned in developed countries by Montreal Protocol in 1996
R-12 CFC-12 CCl2F2 Dichlorodifluoromethane 10800 10200 Banned Also known as Freon, a widely used chlorofluorocarbon halomethane (CFC). Production was banned in developed countries by Montreal Protocol in 1996, and in developing countries (article 5 countries) in 2010.[70]
R-22 HCFC-22 CHClF2 Chlorodifluoromethane 5280 1760 Being phased out A widely used hydrochlorofluorocarbon (HCFC) and powerful greenhouse gas with a GWP equal to 1810. Worldwide production of R-22 in 2008 was about 800 Gg per year, up from about 450 Gg per year in 1998. R-438A (MO-99) is a R-22 replacement.[71]
R-123 HCFC-123 CHCl2CF3 2,2-Dichloro-1,1,1-trifluoroethane 292 79 US phase-out Used in large tonnage centrifugal chiller applications. All U.S. production and import of virgin HCFCs will be phased out by 2030, with limited exceptions.[72] R-123 refrigerant was used to retrofit some chiller that used R-11 refrigerant Trichlorofluoromethane. The production of R-11 was banned in developed countries by Montreal Protocol in 1996.[73]

Other

[edit]
Code Chemical Name Global warming potential 20yr[59] GWP 100yr[59] Commentary
R-152a HFC-152a CH3CHF2 1,1-Difluoroethane 506 138 As a compressed air duster
R-407C   Mixture of difluoromethane and pentafluoroethane and 1,1,1,2-tetrafluoroethane     A mixture of R-32, R-125, and R-134a
R-454B   Difluoromethane and 2,3,3,3-Tetrafluoropropene     HFOs blend of refrigerants Difluoromethane (R-32) and 2,3,3,3-Tetrafluoropropene (R-1234yf).[74][75][76][77]
R-513A   An HFO/HFC blend (56% R-1234yf/44%R-134a)     May replace R-134a as an interim alternative[78]
R-514A   HFO-1336mzz-Z/trans-1,2- dichloroethylene (t-DCE)     An hydrofluoroolefin (HFO)-based refrigerant to replace R-123 in low pressure centrifugal chillers for commercial and industrial applications.[79][80]

Refrigerant reclamation and disposal

[edit]

Coolant and refrigerants are found throughout the industrialized world, in homes, offices, and factories, in devices such as refrigerators, air conditioners, central air conditioning systems (HVAC), freezers, and dehumidifiers. When these units are serviced, there is a risk that refrigerant gas will be vented into the atmosphere either accidentally or intentionally, hence the creation of technician training and certification programs in order to ensure that the material is conserved and managed safely. Mistreatment of these gases has been shown to deplete the ozone layer and is suspected to contribute to global warming.[81]

With the exception of isobutane and propane (R600a, R441A and R290), ammonia and CO2 under Section 608 of the United States' Clean Air Act it is illegal to knowingly release any refrigerants into the atmosphere.[82][83]

Refrigerant reclamation is the act of processing used refrigerant gas which has previously been used in some type of refrigeration loop such that it meets specifications for new refrigerant gas. In the United States, the Clean Air Act of 1990 requires that used refrigerant be processed by a certified reclaimer, which must be licensed by the United States Environmental Protection Agency (EPA), and the material must be recovered and delivered to the reclaimer by EPA-certified technicians.[84]

Classification of refrigerants

[edit]
R407C pressure-enthalpy diagram, isotherms between the two saturation lines

Refrigerants may be divided into three classes according to their manner of absorption or extraction of heat from the substances to be refrigerated:[citation needed]

  • Class 1: This class includes refrigerants that cool by phase change (typically boiling), using the refrigerant's latent heat.
  • Class 2: These refrigerants cool by temperature change or 'sensible heat', the quantity of heat being the specific heat capacity x the temperature change. They are air, calcium chloride brine, sodium chloride brine, alcohol, and similar nonfreezing solutions. The purpose of Class 2 refrigerants is to receive a reduction of temperature from Class 1 refrigerants and convey this lower temperature to the area to be cooled.
  • Class 3: This group consists of solutions that contain absorbed vapors of liquefiable agents or refrigerating media. These solutions function by nature of their ability to carry liquefiable vapors, which produce a cooling effect by the absorption of their heat of solution. They can also be classified into many categories.

R numbering system

[edit]

The R- numbering system was developed by DuPont (which owned the Freon trademark), and systematically identifies the molecular structure of refrigerants made with a single halogenated hydrocarbon. ASHRAE has since set guidelines for the numbering system as follows:[85]

R-X1X2X3X4

  • X1 = Number of unsaturated carbon-carbon bonds (omit if zero)
  • X2 = Number of carbon atoms minus 1 (omit if zero)
  • X3 = Number of hydrogen atoms plus 1
  • X4 = Number of fluorine atoms

Series

[edit]
  • R-xx Methane Series
  • R-1xx Ethane Series
  • R-2xx Propane Series
  • R-4xx Zeotropic blend
  • R-5xx Azeotropic blend
  • R-6xx Saturated hydrocarbons (except for propane which is R-290)
  • R-7xx Inorganic Compounds with a molar mass < 100
  • R-7xxx Inorganic Compounds with a molar mass ≥ 100

Ethane Derived Chains

[edit]
  • Number Only Most symmetrical isomer
  • Lower Case Suffix (a, b, c, etc.) indicates increasingly unsymmetrical isomers

Propane Derived Chains

[edit]
  • Number Only If only one isomer exists; otherwise:
  • First lower case suffix (a-f):
    • a Suffix Cl2 central carbon substitution
    • b Suffix Cl, F central carbon substitution
    • c Suffix F2 central carbon substitution
    • d Suffix Cl, H central carbon substitution
    • e Suffix F, H central carbon substitution
    • f Suffix H2 central carbon substitution
  • 2nd Lower Case Suffix (a, b, c, etc.) Indicates increasingly unsymmetrical isomers

Propene derivatives

[edit]
  • First lower case suffix (x, y, z):
    • x Suffix Cl substitution on central atom
    • y Suffix F substitution on central atom
    • z Suffix H substitution on central atom
  • Second lower case suffix (a-f):
    • a Suffix =CCl2 methylene substitution
    • b Suffix =CClF methylene substitution
    • c Suffix =CF2 methylene substitution
    • d Suffix =CHCl methylene substitution
    • e Suffix =CHF methylene substitution
    • f Suffix =CH2 methylene substitution

Blends

[edit]
  • Upper Case Suffix (A, B, C, etc.) Same blend with different compositions of refrigerants

Miscellaneous

[edit]
  • R-Cxxx Cyclic compound
  • R-Exxx Ether group is present
  • R-CExxx Cyclic compound with an ether group
  • R-4xx/5xx + Upper Case Suffix (A, B, C, etc.) Same blend with different composition of refrigerants
  • R-6xx + Lower Case Letter Indicates increasingly unsymmetrical isomers
  • 7xx/7xxx + Upper Case Letter Same molar mass, different compound
  • R-xxxxB# Bromine is present with the number after B indicating how many bromine atoms
  • R-xxxxI# Iodine is present with the number after I indicating how many iodine atoms
  • R-xxx(E) Trans Molecule
  • R-xxx(Z) Cis Molecule

For example, R-134a has 2 carbon atoms, 2 hydrogen atoms, and 4 fluorine atoms, an empirical formula of tetrafluoroethane. The "a" suffix indicates that the isomer is unbalanced by one atom, giving 1,1,1,2-Tetrafluoroethane. R-134 (without the "a" suffix) would have a molecular structure of 1,1,2,2-Tetrafluoroethane.

The same numbers are used with an R- prefix for generic refrigerants, with a "Propellant" prefix (e.g., "Propellant 12") for the same chemical used as a propellant for an aerosol spray, and with trade names for the compounds, such as "Freon 12". Recently, a practice of using abbreviations HFC- for hydrofluorocarbons, CFC- for chlorofluorocarbons, and HCFC- for hydrochlorofluorocarbons has arisen, because of the regulatory differences among these groups.[citation needed]

Refrigerant safety

[edit]

ASHRAE Standard 34, Designation and Safety Classification of Refrigerants, assigns safety classifications to refrigerants based upon toxicity and flammability.

Using safety information provided by producers, ASHRAE assigns a capital letter to indicate toxicity and a number to indicate flammability. The letter "A" is the least toxic and the number 1 is the least flammable.[86]

See also

[edit]
  • Brine (Refrigerant)
  • Section 608
  • List of Refrigerants

References

[edit]
  1. ^ United Nations Environment Programme (UNEP). "Update on New Refrigerants Designations and Safety Classifications" (PDF). ASHRAE. Retrieved 6 October 2024.
  2. ^ "Phaseout of Class II Ozone-Depleting Substances". US Environmental Protection Agency. 22 July 2015. Retrieved October 6, 2024.
  3. ^ "Protecting Our Climate by Reducing Use of HFCs". United States Environmental Protection Agency. 8 February 2021. Retrieved 6 October 2024.
  4. ^ a b Pearson, S. Forbes. "Refrigerants Past, Present and Future" (PDF). R744. Archived from the original (PDF) on 2018-07-13. Retrieved 2021-03-30.
  5. ^ a b c "Finally, a replacement for R123?". Cooling Post. 17 October 2013.
  6. ^ https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/download/3297/1244/
  7. ^ a b Tomczyk, John (1 May 2017). "What's the Latest with R-404A?". achrnews.com.
  8. ^ Molina, Mario J.; Rowland, F. S (28 June 1974). "Stratospheric sink for chlorofluoromethanes: chlorine catalysed destruction of ozone" (PDF). Nature. 249: 810–812. doi:10.1038/249810a0. Retrieved October 6, 2024.
  9. ^ National Research Council (1976). Halocarbons: Effects on Stratospheric Ozone. Washington, DC: The National Academies Press. doi:10.17226/19978. ISBN 978-0-309-02532-4. Retrieved October 6, 2024.
  10. ^ "Air Conditioners, Dehumidifiers, and R-410A Refrigerant". Sylvane. 1 July 2011. Retrieved 27 July 2023.
  11. ^ Protection, United States Congress Senate Committee on Environment and Public Works Subcommittee on Environmental (May 14, 1987). "Clean Air Act Amendments of 1987: Hearings Before the Subcommittee on Environmental Protection of the Committee on Environment and Public Works, United States Senate, One Hundredth Congress, First Session, on S. 300, S. 321, S. 1351, and S. 1384 ..." U.S. Government Printing Office – via Google Books.
  12. ^ Fluorinated Hydrocarbons—Advances in Research and Application (2013 ed.). ScholarlyEditions. June 21, 2013. p. 179. ISBN 9781481675703 – via Google Books.
  13. ^ Whitman, Bill; Johnson, Bill; Tomczyk, John; Silberstein, Eugene (February 25, 2008). Refrigeration and Air Conditioning Technology. Cengage Learning. p. 171. ISBN 978-1111803223 – via Google Books.
  14. ^ "Scroll Chillers: Conversion from HCFC-22 to HFC-410A and HFC-407C" (PDF). Archived from the original (PDF) on 2021-07-20. Retrieved 2021-03-29.
  15. ^ "What's Happening With R-134a? | 2017-06-05 | ACHRNEWS | ACHR News". achrnews.com.
  16. ^ "Conversion R12/R134a" (PDF). Behr Hella Service GmbH. 1 October 2005. Retrieved 27 July 2023.
  17. ^ "R-407A Gains SNAP OK". achrnews.com (Press release). 22 June 2009.
  18. ^ "June 26, 2009: Emerson Approves R-407A, R-407C for Copeland Discus Compressors". achrnews.com.
  19. ^ "Taking New Refrigerants to the Peak". achrnews.com.
  20. ^ Koenig, H. (31 December 1995). "R502/R22 - replacement refrigerant R507 in commercial refrigeration; R502/R22 - Ersatzkaeltemittel R507 in der Gewerbekuehlung. Anwendungstechnik - Kaeltemittel".
  21. ^ Linton, J. W.; Snelson, W. K.; Triebe, A. R.; Hearty, P. F. (31 December 1995). "System performance comparison of R-507 with R-502". OSTI 211821.
  22. ^ "Daikin reveals details of R32 VRV air conditioner". Cooling Post. 6 February 2020.
  23. ^ a b "Refrigerant blends to challenge hydrocarbon efficiencies". Cooling Post. 22 December 2019.
  24. ^ "An HVAC Technician's Guide to R-454B". achrnews.com.
  25. ^ "The truth about new automotive A/C refrigerant R1234YF". 25 July 2018.
  26. ^ Kontomaris, Konstantinos (2014). "HFO-1336mzz-Z: High Temperature Chemical Stability and Use as A Working Fluid in Organic Rankine Cycles". International Refrigeration and Air Conditioning Conference. Paper 1525
  27. ^ "Trane adopts new low GWP refrigerant R514A". Cooling Post. 15 June 2016.
  28. ^ "R404A – the alternatives". Cooling Post. 26 February 2014.
  29. ^ "Carrier expands R1234ze chiller range". Cooling Post. 20 May 2020.
  30. ^ "Carrier confirms an HFO refrigerant future". Cooling Post. 5 June 2019.
  31. ^ "Greenfreeze: A revolution in domestic refrigeration". ecomall.com. Retrieved 2022-07-04.
  32. ^ a b "Happy birthday, Greenfreeze!". Greenpeace. 25 March 2013. Archived from the original on 2020-04-08. Retrieved 8 June 2015.
  33. ^ "Ozone Secretariat". United Nations Environment Programme. Archived from the original on 12 April 2015.
  34. ^ Gunkel, Christoph (13 September 2013). "Öko-Coup aus Ostdeutschland". Der Spiegel (in German). Retrieved 4 September 2015.
  35. ^ Maté, John (2001). "Making a Difference: A Case Study of the Greenpeace Ozone Campaign". Review of European Community & International Environmental Law. 10 (2): 190–198. doi:10.1111/1467-9388.00275.
  36. ^ Benedick, Richard Elliot Ozone Diplomacy Cambridge, MA: Harvard University 1991.
  37. ^ Honeywell International, Inc. (2010-07-09). "Comment on EPA Proposed Rule Office of Air and Radiation Proposed Significant New Alternatives Policy (SNAP) Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances – Hydrocarbon Refrigerants" (PDF).
  38. ^ "Discurso de Frank Guggenheim no lançamento do Greenfreeze | Brasil". Greenpeace.org. Archived from the original on 24 September 2015. Retrieved 10 June 2015.
  39. ^ "Der Greenfreeze - endlich in den USA angekommen". Greenpeace.de (in German). 28 December 2011. Retrieved 10 June 2015.
  40. ^ "Complying With The Section 608 Refrigerant Recycling Rule | Ozone Layer Protection - Regulatory Programs". Epa.gov. 21 April 2015. Retrieved 10 June 2015.
  41. ^ a b "Greenfreeze: a Revolution in Domestic Refrigeration". ecomall.com. Retrieved 8 June 2015.
  42. ^ "Company background". Archived from the original on 2020-02-20. Retrieved 2021-03-15.
  43. ^ Safeguarding the ozone layer and the global climate System: issues related to Hydrofluorocarbons and Perfluorocarbons (Report). IPCC/TEAP. 2005.
  44. ^ Crowley, Thomas J. (2000). "Causes of Climate Change over the Past 1000 Years". Science. 289 (5477): 270–277. Bibcode:2000Sci...289..270C. doi:10.1126/science.289.5477.270. PMID 10894770.
  45. ^ "2010 to 2015 government policy: environmental quality". GOV.UK. 8 May 2015. Retrieved 10 June 2015.
  46. ^ "PepsiCo Brings First Climate-Friendly Vending Machines to the U.S." phx.corporate-ir.net. Retrieved 8 June 2015.
  47. ^ "Climate-Friendly Greenfreezers Come to the United States". WNBC. 2 October 2008. Retrieved 8 June 2015.
  48. ^ Data, Reports and (7 August 2020). "Natural Refrigerants Market To Reach USD 2.88 Billion By 2027 | Reports and Data". GlobeNewswire News Room (Press release). Retrieved 17 December 2020.
  49. ^ Harris, Catharine. "Anti-inhalant Abuse Campaign Targets Building Codes: 'Huffing’ of Air Conditioning Refrigerant a Dangerous Risk." The Nation's Health. American Public Health Association, 2010. Web. 5 December 2010. https://www.thenationshealth.org/content/39/4/20
  50. ^ IPCC AR6 WG1 Ch7 2021
  51. ^ "GreenFreeze". Greenpeace.
  52. ^ "Significant New Alternatives Program: Substitutes in Household Refrigerators and Freezers". Epa.gov. 13 November 2014. Retrieved 4 June 2018.
  53. ^ Berwald, Juli (29 April 2019). "One overlooked way to fight climate change? Dispose of old CFCs". National Geographic - Environment. Archived from the original on April 29, 2019. Retrieved 30 April 2019.
  54. ^ Butler J. and Montzka S. (2020). "The NOAA Annual Greenhouse Gas Index (AGGI)". NOAA Global Monitoring Laboratory/Earth System Research Laboratories.
  55. ^ Environment, U. N. (31 October 2019). "New guidelines for air conditioners and refrigerators set to tackle climate change". UN Environment. Retrieved 30 March 2020.
  56. ^ Rosenthal, Elisabeth; Lehren, Andrew (20 June 2011). "Relief in Every Window, but Global Worry Too". The New York Times. Retrieved 21 June 2012.
  57. ^ a b Yadav et al 2022
  58. ^ a b c BSRIA 2020
  59. ^ a b c d e f g h IPCC AR5 WG1 Ch8 2013, pp. 714, 731–737
  60. ^ "European Commission on retrofit refrigerants for stationary applications" (PDF). Archived from the original on August 5, 2009. Retrieved 2010-10-29.cite web: CS1 maint: unfit URL (link)
  61. ^ "Protection of Stratospheric Ozone: Hydrocarbon Refrigerants" (PDF). Environment Protection Agency. Retrieved 5 August 2018.
  62. ^ ARB 2022
  63. ^ GM to Introduce HFO-1234yf AC Refrigerant in 2013 US Models
  64. ^ "The Coca-Cola Company Announces Adoption of HFC-Free Insulation in Refrigeration Units to Combat Global Warming". The Coca-Cola Company. 5 June 2006. Archived from the original on 1 November 2013. Retrieved 11 October 2007.
  65. ^ "Modine reinforces its CO2 research efforts". R744.com. 28 June 2007. Archived from the original on 10 February 2008.
  66. ^ Longo, Giovanni A.; Mancin, Simone; Righetti, Giulia; Zilio, Claudio (2015). "HFC32 vaporisation inside a Brazed Plate Heat Exchanger (BPHE): Experimental measurements and IR thermography analysis". International Journal of Refrigeration. 57: 77–86. doi:10.1016/j.ijrefrig.2015.04.017.
  67. ^ May 2010 TEAP XXI/9 Task Force Report
  68. ^ "Protecting Our Climate by Reducing Use of HFCs". US Environmental Protection Agency. 8 February 2021. Retrieved 25 August 2022.
  69. ^ "Background on HFCs and the AIM Act". www.usepa.gov. US EPA. March 2021. Retrieved 27 June 2024.
  70. ^ "1:Update on Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol". Scientific assessment of ozone depletion: 2018 (PDF) (Global Ozone Research and Monitoring Project–Report No. 58 ed.). Geneva, Switzerland: World Meteorological Organization. 2018. p. 1.10. ISBN 978-1-7329317-1-8. Retrieved 22 November 2020.
  71. ^ [1] Chemours M099 as R22 Replacement
  72. ^ [2] Management of HCFC-123 through the Phaseout and Beyond | EPA | Published August 2020 | Retrieved Dec. 18, 2021
  73. ^ [3] Refrigerant R11 (R-11), Freon 11 (Freon R-11) Properties & Replacement
  74. ^ [4] R-454B XL41 refrigerant fact & info sheet
  75. ^ [5] R-454B emerges as a replacement for R-410A | ACHR News (Air Conditioning, Heating, Refrigeration News)
  76. ^ [6] Ccarrier introduces [R-454B] Puron Advance™ as the next generation refrigerant for ducted residential, light commercial products in North America | Indianapolis - 19 December 2018
  77. ^ [7] Johnson Controls selects R-454B as future refrigerant for new HVAC equipment | 27 May 2021
  78. ^ [8] A conversation on refrigerants | ASHRAE Journal, March 2021 | page 30, column 1, paragraph 2
  79. ^ [9] Opteon™ XP30 (R-514A) refrigerant
  80. ^ [10] Trane adopts new low GWP refrigerant R514A | 15 June 2016
  81. ^ "Emissions of Greenhouse Gases in the United States 1998 - Executive Summary". 18 August 2000. Archived from the original on 18 August 2000.
  82. ^ "Frequently Asked Questions on Section 608". Environment Protection Agency. Retrieved 20 December 2013.
  83. ^ "US hydrocarbons". Retrieved 5 August 2018.
  84. ^ "42 U.S. Code § 7671g - National recycling and emission reduction program". LII / Legal Information Institute.
  85. ^ ASHRAE; UNEP (Nov 2022). "Designation and Safety Classification of Refrigerants" (PDF). ASHRAE. Retrieved 1 July 2023.
  86. ^ "Update on New Refrigerants Designations and Safety Classifications" (PDF). American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). April 2020. Archived from the original (PDF) on February 13, 2023. Retrieved October 22, 2022.
 

Sources

[edit]

IPCC reports

[edit]
  • IPCC (2013). Stocker, T. F.; Qin, D.; Plattner, G.-K.; Tignor, M.; et al. (eds.). Climate Change 2013: The Physical Science Basis (PDF). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. ISBN 978-1-107-05799-9. (pb: 978-1-107-66182-0). Fifth Assessment Report - Climate Change 2013
    • Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; et al. (2013). "Chapter 8: Anthropogenic and Natural Radiative Forcing" (PDF). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 659–740.
  • IPCC (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S. L.; et al. (eds.). Climate Change 2021: The Physical Science Basis (PDF). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press (In Press).
  • Forster, Piers; Storelvmo, Trude (2021). "Chapter 7: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity" (PDF). IPCC AR6 WG1 2021.

Other

[edit]
  • "High GWP refrigerants". California Air Resources Board. Retrieved 13 February 2022.
  • "BSRIA's view on refrigerant trends in AC and Heat Pump segments". 2020. Retrieved 2022-02-14.
  • Yadav, Saurabh; Liu, Jie; Kim, Sung Chul (2022). "A comprehensive study on 21st-century refrigerants - R290 and R1234yf: A review". International Journal of Heat and Mass Transfer. 122: 121947. Bibcode:2022IJHMT.18221947Y. doi:10.1016/j.ijheatmasstransfer.2021.121947. S2CID 240534198.
[edit]
  • US Environmental Protection Agency page on the GWPs of various substances
  • Green Cooling Initiative on alternative natural refrigerants cooling technologies
  • International Institute of Refrigeration Archived 2018-09-25 at the Wayback Machine

 

Tubular heat exchanger
Partial view into inlet plenum of shell and tube heat exchanger of a refrigerant based chiller for providing air-conditioning to a building

A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes.[1] The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact.[2] They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. Another example is the heat sink, which is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant.[3]

Flow arrangement

[edit]
Countercurrent (A) and parallel (B) flows

There are three primary classifications of heat exchangers according to their flow arrangement. In parallel-flow heat exchangers, the two fluids enter the exchanger at the same end, and travel in parallel to one another to the other side. In counter-flow heat exchangers the fluids enter the exchanger from opposite ends. The counter current design is the most efficient, in that it can transfer the most heat from the heat (transfer) medium per unit mass due to the fact that the average temperature difference along any unit length is higher. See countercurrent exchange. In a cross-flow heat exchanger, the fluids travel roughly perpendicular to one another through the exchanger.

For efficiency, heat exchangers are designed to maximize the surface area of the wall between the two fluids, while minimizing resistance to fluid flow through the exchanger. The exchanger's performance can also be affected by the addition of fins or corrugations in one or both directions, which increase surface area and may channel fluid flow or induce turbulence.

The driving temperature across the heat transfer surface varies with position, but an appropriate mean temperature can be defined. In most simple systems this is the "log mean temperature difference" (LMTD). Sometimes direct knowledge of the LMTD is not available and the NTU method is used.

Types

[edit]

Double pipe heat exchangers are the simplest exchangers used in industries. On one hand, these heat exchangers are cheap for both design and maintenance, making them a good choice for small industries. On the other hand, their low efficiency coupled with the high space occupied in large scales, has led modern industries to use more efficient heat exchangers like shell and tube or plate. However, since double pipe heat exchangers are simple, they are used to teach heat exchanger design basics to students as the fundamental rules for all heat exchangers are the same.

1. Double-pipe heat exchanger

When one fluid flows through the smaller pipe, the other flows through the annular gap between the two pipes. These flows may be parallel or counter-flows in a double pipe heat exchanger.

(a) Parallel flow, where both hot and cold liquids enter the heat exchanger from the same side, flow in the same direction and exit at the same end. This configuration is preferable when the two fluids are intended to reach exactly the same temperature, as it reduces thermal stress and produces a more uniform rate of heat transfer.

(b) Counter-flow, where hot and cold fluids enter opposite sides of the heat exchanger, flow in opposite directions, and exit at opposite ends. This configuration is preferable when the objective is to maximize heat transfer between the fluids, as it creates a larger temperature differential when used under otherwise similar conditions.[citation needed]

The figure above illustrates the parallel and counter-flow flow directions of the fluid exchanger.

2. Shell-and-tube heat exchanger

In a shell-and-tube heat exchanger, two fluids at different temperatures flow through the heat exchanger. One of the fluids flows through the tube side and the other fluid flows outside the tubes, but inside the shell (shell side).

Baffles are used to support the tubes, direct the fluid flow to the tubes in an approximately natural manner, and maximize the turbulence of the shell fluid. There are many various kinds of baffles, and the choice of baffle form, spacing, and geometry depends on the allowable flow rate of the drop in shell-side force, the need for tube support, and the flow-induced vibrations. There are several variations of shell-and-tube exchangers available; the differences lie in the arrangement of flow configurations and details of construction.

In application to cool air with shell-and-tube technology (such as intercooler / charge air cooler for combustion engines), fins can be added on the tubes to increase heat transfer area on air side and create a tubes & fins configuration.

3. Plate Heat Exchanger

A plate heat exchanger contains an amount of thin shaped heat transfer plates bundled together. The gasket arrangement of each pair of plates provides two separate channel system. Each pair of plates form a channel where the fluid can flow through. The pairs are attached by welding and bolting methods. The following shows the components in the heat exchanger.

In single channels the configuration of the gaskets enables flow through. Thus, this allows the main and secondary media in counter-current flow. A gasket plate heat exchanger has a heat region from corrugated plates. The gasket function as seal between plates and they are located between frame and pressure plates. Fluid flows in a counter current direction throughout the heat exchanger. An efficient thermal performance is produced. Plates are produced in different depths, sizes and corrugated shapes. There are different types of plates available including plate and frame, plate and shell and spiral plate heat exchangers. The distribution area guarantees the flow of fluid to the whole heat transfer surface. This helps to prevent stagnant area that can cause accumulation of unwanted material on solid surfaces. High flow turbulence between plates results in a greater transfer of heat and a decrease in pressure.

4. Condensers and Boilers Heat exchangers using a two-phase heat transfer system are condensers, boilers and evaporators. Condensers are instruments that take and cool hot gas or vapor to the point of condensation and transform the gas into a liquid form. The point at which liquid transforms to gas is called vaporization and vice versa is called condensation. Surface condenser is the most common type of condenser where it includes a water supply device. Figure 5 below displays a two-pass surface condenser.

The pressure of steam at the turbine outlet is low where the steam density is very low where the flow rate is very high. To prevent a decrease in pressure in the movement of steam from the turbine to condenser, the condenser unit is placed underneath and connected to the turbine. Inside the tubes the cooling water runs in a parallel way, while steam moves in a vertical downward position from the wide opening at the top and travel through the tube. Furthermore, boilers are categorized as initial application of heat exchangers. The word steam generator was regularly used to describe a boiler unit where a hot liquid stream is the source of heat rather than the combustion products. Depending on the dimensions and configurations the boilers are manufactured. Several boilers are only able to produce hot fluid while on the other hand the others are manufactured for steam production.

Shell and tube

[edit]
A shell and tube heat exchanger
Shell and tube heat exchanger

Shell and tube heat exchangers consist of a series of tubes which contain fluid that must be either heated or cooled. A second fluid runs over the tubes that are being heated or cooled so that it can either provide the heat or absorb the heat required. A set of tubes is called the tube bundle and can be made up of several types of tubes: plain, longitudinally finned, etc. Shell and tube heat exchangers are typically used for high-pressure applications (with pressures greater than 30 bar and temperatures greater than 260 °C).[4] This is because the shell and tube heat exchangers are robust due to their shape.
Several thermal design features must be considered when designing the tubes in the shell and tube heat exchangers: There can be many variations on the shell and tube design. Typically, the ends of each tube are connected to plenums (sometimes called water boxes) through holes in tubesheets. The tubes may be straight or bent in the shape of a U, called U-tubes.

  • Tube diameter: Using a small tube diameter makes the heat exchanger both economical and compact. However, it is more likely for the heat exchanger to foul up faster and the small size makes mechanical cleaning of the fouling difficult. To prevail over the fouling and cleaning problems, larger tube diameters can be used. Thus to determine the tube diameter, the available space, cost and fouling nature of the fluids must be considered.
  • Tube thickness: The thickness of the wall of the tubes is usually determined to ensure:
    • There is enough room for corrosion
    • That flow-induced vibration has resistance
    • Axial strength
    • Availability of spare parts
    • Hoop strength (to withstand internal tube pressure)
    • Buckling strength (to withstand overpressure in the shell)
  • Tube length: heat exchangers are usually cheaper when they have a smaller shell diameter and a long tube length. Thus, typically there is an aim to make the heat exchanger as long as physically possible whilst not exceeding production capabilities. However, there are many limitations for this, including space available at the installation site and the need to ensure tubes are available in lengths that are twice the required length (so they can be withdrawn and replaced). Also, long, thin tubes are difficult to take out and replace.
  • Tube pitch: when designing the tubes, it is practical to ensure that the tube pitch (i.e., the centre-centre distance of adjoining tubes) is not less than 1.25 times the tubes' outside diameter. A larger tube pitch leads to a larger overall shell diameter, which leads to a more expensive heat exchanger.
  • Tube corrugation: this type of tubes, mainly used for the inner tubes, increases the turbulence of the fluids and the effect is very important in the heat transfer giving a better performance.
  • Tube Layout: refers to how tubes are positioned within the shell. There are four main types of tube layout, which are, triangular (30°), rotated triangular (60°), square (90°) and rotated square (45°). The triangular patterns are employed to give greater heat transfer as they force the fluid to flow in a more turbulent fashion around the piping. Square patterns are employed where high fouling is experienced and cleaning is more regular.
  • Baffle Design: baffles are used in shell and tube heat exchangers to direct fluid across the tube bundle. They run perpendicularly to the shell and hold the bundle, preventing the tubes from sagging over a long length. They can also prevent the tubes from vibrating. The most common type of baffle is the segmental baffle. The semicircular segmental baffles are oriented at 180 degrees to the adjacent baffles forcing the fluid to flow upward and downwards between the tube bundle. Baffle spacing is of large thermodynamic concern when designing shell and tube heat exchangers. Baffles must be spaced with consideration for the conversion of pressure drop and heat transfer. For thermo economic optimization it is suggested that the baffles be spaced no closer than 20% of the shell's inner diameter. Having baffles spaced too closely causes a greater pressure drop because of flow redirection. Consequently, having the baffles spaced too far apart means that there may be cooler spots in the corners between baffles. It is also important to ensure the baffles are spaced close enough that the tubes do not sag. The other main type of baffle is the disc and doughnut baffle, which consists of two concentric baffles. An outer, wider baffle looks like a doughnut, whilst the inner baffle is shaped like a disk. This type of baffle forces the fluid to pass around each side of the disk then through the doughnut baffle generating a different type of fluid flow.
  • Tubes & fins Design: in application to cool air with shell-and-tube technology (such as intercooler / charge air cooler for combustion engines), the difference in heat transfer between air and cold fluid can be such that there is a need to increase heat transfer area on air side. For this function fins can be added on the tubes to increase heat transfer area on air side and create a tubes & fins configuration.

Fixed tube liquid-cooled heat exchangers especially suitable for marine and harsh applications can be assembled with brass shells, copper tubes, brass baffles, and forged brass integral end hubs.[citation needed] (See: Copper in heat exchangers).

Plate

[edit]
Conceptual diagram of a plate and frame heat exchanger
A single plate heat exchanger
An interchangeable plate heat exchanger directly applied to the system of a swimming pool

Another type of heat exchanger is the plate heat exchanger. These exchangers are composed of many thin, slightly separated plates that have very large surface areas and small fluid flow passages for heat transfer. Advances in gasket and brazing technology have made the plate-type heat exchanger increasingly practical. In HVAC applications, large heat exchangers of this type are called plate-and-frame; when used in open loops, these heat exchangers are normally of the gasket type to allow periodic disassembly, cleaning, and inspection. There are many types of permanently bonded plate heat exchangers, such as dip-brazed, vacuum-brazed, and welded plate varieties, and they are often specified for closed-loop applications such as refrigeration. Plate heat exchangers also differ in the types of plates that are used, and in the configurations of those plates. Some plates may be stamped with "chevron", dimpled, or other patterns, where others may have machined fins and/or grooves.

When compared to shell and tube exchangers, the stacked-plate arrangement typically has lower volume and cost. Another difference between the two is that plate exchangers typically serve low to medium pressure fluids, compared to medium and high pressures of shell and tube. A third and important difference is that plate exchangers employ more countercurrent flow rather than cross current flow, which allows lower approach temperature differences, high temperature changes, and increased efficiencies.

Plate and shell

[edit]

A third type of heat exchanger is a plate and shell heat exchanger, which combines plate heat exchanger with shell and tube heat exchanger technologies. The heart of the heat exchanger contains a fully welded circular plate pack made by pressing and cutting round plates and welding them together. Nozzles carry flow in and out of the platepack (the 'Plate side' flowpath). The fully welded platepack is assembled into an outer shell that creates a second flowpath ( the 'Shell side'). Plate and shell technology offers high heat transfer, high pressure, high operating temperature, compact size, low fouling and close approach temperature. In particular, it does completely without gaskets, which provides security against leakage at high pressures and temperatures.

Adiabatic wheel

[edit]

A fourth type of heat exchanger uses an intermediate fluid or solid store to hold heat, which is then moved to the other side of the heat exchanger to be released. Two examples of this are adiabatic wheels, which consist of a large wheel with fine threads rotating through the hot and cold fluids, and fluid heat exchangers.

Plate fin

[edit]

This type of heat exchanger uses "sandwiched" passages containing fins to increase the effectiveness of the unit. The designs include crossflow and counterflow coupled with various fin configurations such as straight fins, offset fins and wavy fins.

Plate and fin heat exchangers are usually made of aluminum alloys, which provide high heat transfer efficiency. The material enables the system to operate at a lower temperature difference and reduce the weight of the equipment. Plate and fin heat exchangers are mostly used for low temperature services such as natural gas, helium and oxygen liquefaction plants, air separation plants and transport industries such as motor and aircraft engines.

Advantages of plate and fin heat exchangers:

  • High heat transfer efficiency especially in gas treatment
  • Larger heat transfer area
  • Approximately 5 times lighter in weight than that of shell and tube heat exchanger. [citation needed]
  • Able to withstand high pressure

Disadvantages of plate and fin heat exchangers:

  • Might cause clogging as the pathways are very narrow
  • Difficult to clean the pathways
  • Aluminium alloys are susceptible to Mercury Liquid Embrittlement Failure

Finned tube

[edit]

The usage of fins in a tube-based heat exchanger is common when one of the working fluids is a low-pressure gas, and is typical for heat exchangers that operate using ambient air, such as automotive radiators and HVAC air condensers. Fins dramatically increase the surface area with which heat can be exchanged, which improves the efficiency of conducting heat to a fluid with very low thermal conductivity, such as air. The fins are typically made from aluminium or copper since they must conduct heat from the tube along the length of the fins, which are usually very thin.

The main construction types of finned tube exchangers are:

  • A stack of evenly-spaced metal plates act as the fins and the tubes are pressed through pre-cut holes in the fins, good thermal contact usually being achieved by deformation of the fins around the tube. This is typical construction for HVAC air coils and large refrigeration condensers.
  • Fins are spiral-wound onto individual tubes as a continuous strip, the tubes can then be assembled in banks, bent in a serpentine pattern, or wound into large spirals.
  • Zig-zag metal strips are sandwiched between flat rectangular tubes, often being soldered or brazed together for good thermal and mechanical strength. This is common in low-pressure heat exchangers such as water-cooling radiators. Regular flat tubes will expand and deform if exposed to high pressures but flat microchannel tubes allow this construction to be used for high pressures.[5]

Stacked-fin or spiral-wound construction can be used for the tubes inside shell-and-tube heat exchangers when high efficiency thermal transfer to a gas is required.

In electronics cooling, heat sinks, particularly those using heat pipes, can have a stacked-fin construction.

Pillow plate

[edit]

A pillow plate heat exchanger is commonly used in the dairy industry for cooling milk in large direct-expansion stainless steel bulk tanks. Nearly the entire surface area of a tank can be integrated with this heat exchanger, without gaps that would occur between pipes welded to the exterior of the tank. Pillow plates can also be constructed as flat plates that are stacked inside a tank. The relatively flat surface of the plates allows easy cleaning, especially in sterile applications.

The pillow plate can be constructed using either a thin sheet of metal welded to the thicker surface of a tank or vessel, or two thin sheets welded together. The surface of the plate is welded with a regular pattern of dots or a serpentine pattern of weld lines. After welding the enclosed space is pressurised with sufficient force to cause the thin metal to bulge out around the welds, providing a space for heat exchanger liquids to flow, and creating a characteristic appearance of a swelled pillow formed out of metal.

Waste heat recovery units

[edit]

A waste heat recovery unit (WHRU) is a heat exchanger that recovers heat from a hot gas stream while transferring it to a working medium, typically water or oils. The hot gas stream can be the exhaust gas from a gas turbine or a diesel engine or a waste gas from industry or refinery.

Large systems with high volume and temperature gas streams, typical in industry, can benefit from steam Rankine cycle (SRC) in a waste heat recovery unit, but these cycles are too expensive for small systems. The recovery of heat from low temperature systems requires different working fluids than steam.

An organic Rankine cycle (ORC) waste heat recovery unit can be more efficient at low temperature range using refrigerants that boil at lower temperatures than water. Typical organic refrigerants are ammonia, pentafluoropropane (R-245fa and R-245ca), and toluene.

The refrigerant is boiled by the heat source in the evaporator to produce super-heated vapor. This fluid is expanded in the turbine to convert thermal energy to kinetic energy, that is converted to electricity in the electrical generator. This energy transfer process decreases the temperature of the refrigerant that, in turn, condenses. The cycle is closed and completed using a pump to send the fluid back to the evaporator.

Dynamic scraped surface

[edit]

Another type of heat exchanger is called "(dynamic) scraped surface heat exchanger". This is mainly used for heating or cooling with high-viscosity products, crystallization processes, evaporation and high-fouling applications. Long running times are achieved due to the continuous scraping of the surface, thus avoiding fouling and achieving a sustainable heat transfer rate during the process.

Phase-change

[edit]
Typical kettle reboiler used for industrial distillation towers
Typical water-cooled surface condenser

In addition to heating up or cooling down fluids in just a single phase, heat exchangers can be used either to heat a liquid to evaporate (or boil) it or used as condensers to cool a vapor and condense it to a liquid. In chemical plants and refineries, reboilers used to heat incoming feed for distillation towers are often heat exchangers.[6][7]

Distillation set-ups typically use condensers to condense distillate vapors back into liquid.

Power plants that use steam-driven turbines commonly use heat exchangers to boil water into steam. Heat exchangers or similar units for producing steam from water are often called boilers or steam generators.

In the nuclear power plants called pressurized water reactors, special large heat exchangers pass heat from the primary (reactor plant) system to the secondary (steam plant) system, producing steam from water in the process. These are called steam generators. All fossil-fueled and nuclear power plants using steam-driven turbines have surface condensers to convert the exhaust steam from the turbines into condensate (water) for re-use.[8][9]

To conserve energy and cooling capacity in chemical and other plants, regenerative heat exchangers can transfer heat from a stream that must be cooled to another stream that must be heated, such as distillate cooling and reboiler feed pre-heating.

This term can also refer to heat exchangers that contain a material within their structure that has a change of phase. This is usually a solid to liquid phase due to the small volume difference between these states. This change of phase effectively acts as a buffer because it occurs at a constant temperature but still allows for the heat exchanger to accept additional heat. One example where this has been investigated is for use in high power aircraft electronics.

Heat exchangers functioning in multiphase flow regimes may be subject to the Ledinegg instability.

Direct contact

[edit]

Direct contact heat exchangers involve heat transfer between hot and cold streams of two phases in the absence of a separating wall.[10] Thus such heat exchangers can be classified as:

  • Gas – liquid
  • Immiscible liquid – liquid
  • Solid-liquid or solid – gas

Most direct contact heat exchangers fall under the Gas – Liquid category, where heat is transferred between a gas and liquid in the form of drops, films or sprays.[4]

Such types of heat exchangers are used predominantly in air conditioning, humidification, industrial hot water heating, water cooling and condensing plants.[11]

Phases[12] Continuous phase Driving force Change of phase Examples
Gas – Liquid Gas Gravity No Spray columns, packed columns
      Yes Cooling towers, falling droplet evaporators
    Forced No Spray coolers/quenchers
    Liquid flow Yes Spray condensers/evaporation, jet condensers
  Liquid Gravity No Bubble columns, perforated tray columns
      Yes Bubble column condensers
    Forced No Gas spargers
    Gas flow Yes Direct contact evaporators, submerged combustion

Microchannel

[edit]

Microchannel heat exchangers are multi-pass parallel flow heat exchangers consisting of three main elements: manifolds (inlet and outlet), multi-port tubes with the hydraulic diameters smaller than 1mm, and fins. All the elements usually brazed together using controllable atmosphere brazing process. Microchannel heat exchangers are characterized by high heat transfer ratio, low refrigerant charges, compact size, and lower airside pressure drops compared to finned tube heat exchangers.[citation needed] Microchannel heat exchangers are widely used in automotive industry as the car radiators, and as condenser, evaporator, and cooling/heating coils in HVAC industry.

Micro heat exchangers, Micro-scale heat exchangers, or microstructured heat exchangers are heat exchangers in which (at least one) fluid flows in lateral confinements with typical dimensions below 1 mm. The most typical such confinement are microchannels, which are channels with a hydraulic diameter below 1 mm. Microchannel heat exchangers can be made from metal or ceramics.[13] Microchannel heat exchangers can be used for many applications including:

  • high-performance aircraft gas turbine engines[14]
  • heat pumps[15]
  • Microprocessor and microchip cooling[16]
  • air conditioning[17]

HVAC and refrigeration air coils

[edit]

One of the widest uses of heat exchangers is for refrigeration and air conditioning. This class of heat exchangers is commonly called air coils, or just coils due to their often-serpentine internal tubing, or condensers in the case of refrigeration, and are typically of the finned tube type. Liquid-to-air, or air-to-liquid HVAC coils are typically of modified crossflow arrangement. In vehicles, heat coils are often called heater cores.

On the liquid side of these heat exchangers, the common fluids are water, a water-glycol solution, steam, or a refrigerant. For heating coils, hot water and steam are the most common, and this heated fluid is supplied by boilers, for example. For cooling coils, chilled water and refrigerant are most common. Chilled water is supplied from a chiller that is potentially located very far away, but refrigerant must come from a nearby condensing unit. When a refrigerant is used, the cooling coil is the evaporator, and the heating coil is the condenser in the vapor-compression refrigeration cycle. HVAC coils that use this direct-expansion of refrigerants are commonly called DX coils. Some DX coils are "microchannel" type.[5]

On the air side of HVAC coils a significant difference exists between those used for heating, and those for cooling. Due to psychrometrics, air that is cooled often has moisture condensing out of it, except with extremely dry air flows. Heating some air increases that airflow's capacity to hold water. So heating coils need not consider moisture condensation on their air-side, but cooling coils must be adequately designed and selected to handle their particular latent (moisture) as well as the sensible (cooling) loads. The water that is removed is called condensate.

For many climates, water or steam HVAC coils can be exposed to freezing conditions. Because water expands upon freezing, these somewhat expensive and difficult to replace thin-walled heat exchangers can easily be damaged or destroyed by just one freeze. As such, freeze protection of coils is a major concern of HVAC designers, installers, and operators.

The introduction of indentations placed within the heat exchange fins controlled condensation, allowing water molecules to remain in the cooled air.[18]

The heat exchangers in direct-combustion furnaces, typical in many residences, are not 'coils'. They are, instead, gas-to-air heat exchangers that are typically made of stamped steel sheet metal. The combustion products pass on one side of these heat exchangers, and air to heat on the other. A cracked heat exchanger is therefore a dangerous situation that requires immediate attention because combustion products may enter living space.

Helical-coil

[edit]
Helical-Coil Heat Exchanger sketch, which consists of a shell, core, and tubes (Scott S. Haraburda design)

Although double-pipe heat exchangers are the simplest to design, the better choice in the following cases would be the helical-coil heat exchanger (HCHE):

  • The main advantage of the HCHE, like that for the Spiral heat exchanger (SHE), is its highly efficient use of space, especially when it's limited and not enough straight pipe can be laid.[19]
  • Under conditions of low flowrates (or laminar flow), such that the typical shell-and-tube exchangers have low heat-transfer coefficients and becoming uneconomical.[19]
  • When there is low pressure in one of the fluids, usually from accumulated pressure drops in other process equipment.[19]
  • When one of the fluids has components in multiple phases (solids, liquids, and gases), which tends to create mechanical problems during operations, such as plugging of small-diameter tubes.[20] Cleaning of helical coils for these multiple-phase fluids can prove to be more difficult than its shell and tube counterpart; however the helical coil unit would require cleaning less often.

These have been used in the nuclear industry as a method for exchanging heat in a sodium system for large liquid metal fast breeder reactors since the early 1970s, using an HCHE device invented by Charles E. Boardman and John H. Germer.[21] There are several simple methods for designing HCHE for all types of manufacturing industries, such as using the Ramachandra K. Patil (et al.) method from India and the Scott S. Haraburda method from the United States.[19][20]

However, these are based upon assumptions of estimating inside heat transfer coefficient, predicting flow around the outside of the coil, and upon constant heat flux.[22]

Spiral

[edit]
Schematic drawing of a spiral heat exchanger

A modification to the perpendicular flow of the typical HCHE involves the replacement of shell with another coiled tube, allowing the two fluids to flow parallel to one another, and which requires the use of different design calculations.[23] These are the Spiral Heat Exchangers (SHE), which may refer to a helical (coiled) tube configuration, more generally, the term refers to a pair of flat surfaces that are coiled to form the two channels in a counter-flow arrangement. Each of the two channels has one long curved path. A pair of fluid ports are connected tangentially to the outer arms of the spiral, and axial ports are common, but optional.[24]

The main advantage of the SHE is its highly efficient use of space. This attribute is often leveraged and partially reallocated to gain other improvements in performance, according to well known tradeoffs in heat exchanger design. (A notable tradeoff is capital cost vs operating cost.) A compact SHE may be used to have a smaller footprint and thus lower all-around capital costs, or an oversized SHE may be used to have less pressure drop, less pumping energy, higher thermal efficiency, and lower energy costs.

Construction

[edit]

The distance between the sheets in the spiral channels is maintained by using spacer studs that were welded prior to rolling. Once the main spiral pack has been rolled, alternate top and bottom edges are welded and each end closed by a gasketed flat or conical cover bolted to the body. This ensures no mixing of the two fluids occurs. Any leakage is from the periphery cover to the atmosphere, or to a passage that contains the same fluid.[25]

Self cleaning

[edit]

Spiral heat exchangers are often used in the heating of fluids that contain solids and thus tend to foul the inside of the heat exchanger. The low pressure drop lets the SHE handle fouling more easily. The SHE uses a “self cleaning” mechanism, whereby fouled surfaces cause a localized increase in fluid velocity, thus increasing the drag (or fluid friction) on the fouled surface, thus helping to dislodge the blockage and keep the heat exchanger clean. "The internal walls that make up the heat transfer surface are often rather thick, which makes the SHE very robust, and able to last a long time in demanding environments."[citation needed] They are also easily cleaned, opening out like an oven where any buildup of foulant can be removed by pressure washing.

Self-cleaning water filters are used to keep the system clean and running without the need to shut down or replace cartridges and bags.

Flow arrangements

[edit]
A comparison between the operations and effects of a cocurrent and a countercurrent flow exchange system is depicted by the upper and lower diagrams respectively. In both it is assumed (and indicated) that red has a higher value (e.g. of temperature) than blue and that the property being transported in the channels therefore flows from red to blue. Channels are contiguous if effective exchange is to occur (i.e. there can be no gap between the channels).

There are three main types of flows in a spiral heat exchanger:

  • Counter-current Flow: Fluids flow in opposite directions. These are used for liquid-liquid, condensing and gas cooling applications. Units are usually mounted vertically when condensing vapour and mounted horizontally when handling high concentrations of solids.
  • Spiral Flow/Cross Flow: One fluid is in spiral flow and the other in a cross flow. Spiral flow passages are welded at each side for this type of spiral heat exchanger. This type of flow is suitable for handling low density gas, which passes through the cross flow, avoiding pressure loss. It can be used for liquid-liquid applications if one liquid has a considerably greater flow rate than the other.
  • Distributed Vapour/Spiral flow: This design is that of a condenser, and is usually mounted vertically. It is designed to cater for the sub-cooling of both condensate and non-condensables. The coolant moves in a spiral and leaves via the top. Hot gases that enter leave as condensate via the bottom outlet.

Applications

[edit]

The Spiral heat exchanger is good for applications such as pasteurization, digester heating, heat recovery, pre-heating (see: recuperator), and effluent cooling. For sludge treatment, SHEs are generally smaller than other types of heat exchangers.[citation needed] These are used to transfer the heat.

Selection

[edit]

Due to the many variables involved, selecting optimal heat exchangers is challenging. Hand calculations are possible, but many iterations are typically needed. As such, heat exchangers are most often selected via computer programs, either by system designers, who are typically engineers, or by equipment vendors.

To select an appropriate heat exchanger, the system designers (or equipment vendors) would firstly consider the design limitations for each heat exchanger type. Though cost is often the primary criterion, several other selection criteria are important:

  • High/low pressure limits
  • Thermal performance
  • Temperature ranges
  • Product mix (liquid/liquid, particulates or high-solids liquid)
  • Pressure drops across the exchanger
  • Fluid flow capacity
  • Cleanability, maintenance and repair
  • Materials required for construction
  • Ability and ease of future expansion
  • Material selection, such as copper, aluminium, carbon steel, stainless steel, nickel alloys, ceramic, polymer, and titanium.[26][27]

Small-diameter coil technologies are becoming more popular in modern air conditioning and refrigeration systems because they have better rates of heat transfer than conventional sized condenser and evaporator coils with round copper tubes and aluminum or copper fin that have been the standard in the HVAC industry. Small diameter coils can withstand the higher pressures required by the new generation of environmentally friendlier refrigerants. Two small diameter coil technologies are currently available for air conditioning and refrigeration products: copper microgroove[28] and brazed aluminum microchannel.[citation needed]

Choosing the right heat exchanger (HX) requires some knowledge of the different heat exchanger types, as well as the environment where the unit must operate. Typically in the manufacturing industry, several differing types of heat exchangers are used for just one process or system to derive the final product. For example, a kettle HX for pre-heating, a double pipe HX for the 'carrier' fluid and a plate and frame HX for final cooling. With sufficient knowledge of heat exchanger types and operating requirements, an appropriate selection can be made to optimise the process.[29]

Monitoring and maintenance

[edit]

Online monitoring of commercial heat exchangers is done by tracking the overall heat transfer coefficient. The overall heat transfer coefficient tends to decline over time due to fouling.

By periodically calculating the overall heat transfer coefficient from exchanger flow rates and temperatures, the owner of the heat exchanger can estimate when cleaning the heat exchanger is economically attractive.

Integrity inspection of plate and tubular heat exchanger can be tested in situ by the conductivity or helium gas methods. These methods confirm the integrity of the plates or tubes to prevent any cross contamination and the condition of the gaskets.

Mechanical integrity monitoring of heat exchanger tubes may be conducted through Nondestructive methods such as eddy current testing.

Fouling

[edit]
A heat exchanger in a steam power station contaminated with macrofouling

Fouling occurs when impurities deposit on the heat exchange surface. Deposition of these impurities can decrease heat transfer effectiveness significantly over time and are caused by:

  • Low wall shear stress
  • Low fluid velocities
  • High fluid velocities
  • Reaction product solid precipitation
  • Precipitation of dissolved impurities due to elevated wall temperatures

The rate of heat exchanger fouling is determined by the rate of particle deposition less re-entrainment/suppression. This model was originally proposed in 1959 by Kern and Seaton.

Crude Oil Exchanger Fouling. In commercial crude oil refining, crude oil is heated from 21 °C (70 °F) to 343 °C (649 °F) prior to entering the distillation column. A series of shell and tube heat exchangers typically exchange heat between crude oil and other oil streams to heat the crude to 260 °C (500 °F) prior to heating in a furnace. Fouling occurs on the crude side of these exchangers due to asphaltene insolubility. The nature of asphaltene solubility in crude oil was successfully modeled by Wiehe and Kennedy.[30] The precipitation of insoluble asphaltenes in crude preheat trains has been successfully modeled as a first order reaction by Ebert and Panchal[31] who expanded on the work of Kern and Seaton.

Cooling Water Fouling. Cooling water systems are susceptible to fouling. Cooling water typically has a high total dissolved solids content and suspended colloidal solids. Localized precipitation of dissolved solids occurs at the heat exchange surface due to wall temperatures higher than bulk fluid temperature. Low fluid velocities (less than 3 ft/s) allow suspended solids to settle on the heat exchange surface. Cooling water is typically on the tube side of a shell and tube exchanger because it's easy to clean. To prevent fouling, designers typically ensure that cooling water velocity is greater than 0.9 m/s and bulk fluid temperature is maintained less than 60 °C (140 °F). Other approaches to control fouling control combine the "blind" application of biocides and anti-scale chemicals with periodic lab testing.

Maintenance

[edit]

Plate and frame heat exchangers can be disassembled and cleaned periodically. Tubular heat exchangers can be cleaned by such methods as acid cleaning, sandblasting, high-pressure water jet, bullet cleaning, or drill rods.

In large-scale cooling water systems for heat exchangers, water treatment such as purification, addition of chemicals, and testing, is used to minimize fouling of the heat exchange equipment. Other water treatment is also used in steam systems for power plants, etc. to minimize fouling and corrosion of the heat exchange and other equipment.

A variety of companies have started using water borne oscillations technology to prevent biofouling. Without the use of chemicals, this type of technology has helped in providing a low-pressure drop in heat exchangers.

Design and manufacturing regulations

[edit]

The design and manufacturing of heat exchangers has numerous regulations, which vary according to the region in which they will be used.

Design and manufacturing codes include: ASME Boiler and Pressure Vessel Code (US); PD 5500 (UK); BS 1566 (UK);[32] EN 13445 (EU); CODAP (French); Pressure Equipment Safety Regulations 2016 (PER) (UK); Pressure Equipment Directive (EU); NORSOK (Norwegian); TEMA;[33] API 12; and API 560.[citation needed]

In nature

[edit]

Humans

[edit]

The human nasal passages serve as a heat exchanger, with cool air being inhaled and warm air being exhaled. Its effectiveness can be demonstrated by putting the hand in front of the face and exhaling, first through the nose and then through the mouth. Air exhaled through the nose is substantially cooler.[34][35] This effect can be enhanced with clothing, by, for example, wearing a scarf over the face while breathing in cold weather.

In species that have external testes (such as human), the artery to the testis is surrounded by a mesh of veins called the pampiniform plexus. This cools the blood heading to the testes, while reheating the returning blood.

Birds, fish, marine mammals

[edit]
Counter-current exchange conservation circuit

"Countercurrent" heat exchangers occur naturally in the circulatory systems of fish, whales and other marine mammals. Arteries to the skin carrying warm blood are intertwined with veins from the skin carrying cold blood, causing the warm arterial blood to exchange heat with the cold venous blood. This reduces the overall heat loss in cold water. Heat exchangers are also present in the tongues of baleen whales as large volumes of water flow through their mouths.[36][37] Wading birds use a similar system to limit heat losses from their body through their legs into the water.

Carotid rete

[edit]

Carotid rete is a counter-current heat exchanging organ in some ungulates. The blood ascending the carotid arteries on its way to the brain, flows via a network of vessels where heat is discharged to the veins of cooler blood descending from the nasal passages. The carotid rete allows Thomson's gazelle to maintain its brain almost 3 °C (5.4 °F) cooler than the rest of the body, and therefore aids in tolerating bursts in metabolic heat production such as associated with outrunning cheetahs (during which the body temperature exceeds the maximum temperature at which the brain could function).[38] Humans with other primates lack a carotid rete.[39]

In industry

[edit]

Heat exchangers are widely used in industry both for cooling and heating large scale industrial processes. The type and size of heat exchanger used can be tailored to suit a process depending on the type of fluid, its phase, temperature, density, viscosity, pressures, chemical composition and various other thermodynamic properties.

In many industrial processes there is waste of energy or a heat stream that is being exhausted, heat exchangers can be used to recover this heat and put it to use by heating a different stream in the process. This practice saves a lot of money in industry, as the heat supplied to other streams from the heat exchangers would otherwise come from an external source that is more expensive and more harmful to the environment.

Heat exchangers are used in many industries, including:

  • Waste water treatment
  • Refrigeration
  • Wine and beer making
  • Petroleum refining
  • Nuclear power

In waste water treatment, heat exchangers play a vital role in maintaining optimal temperatures within anaerobic digesters to promote the growth of microbes that remove pollutants. Common types of heat exchangers used in this application are the double pipe heat exchanger as well as the plate and frame heat exchanger.

In aircraft

[edit]

In commercial aircraft heat exchangers are used to take heat from the engine's oil system to heat cold fuel.[40] This improves fuel efficiency, as well as reduces the possibility of water entrapped in the fuel freezing in components.[41]

Current market and forecast

[edit]

Estimated at US$17.5 billion in 2021, the global demand of heat exchangers is expected to experience robust growth of about 5% annually over the next years. The market value is expected to reach US$27 billion by 2030. With an expanding desire for environmentally friendly options and increased development of offices, retail sectors, and public buildings, market expansion is due to grow.[42]

A model of a simple heat exchanger

[edit]

A simple heat exchange [43][44] might be thought of as two straight pipes with fluid flow, which are thermally connected. Let the pipes be of equal length L, carrying fluids with heat capacity (energy per unit mass per unit change in temperature) and let the mass flow rate of the fluids through the pipes, both in the same direction, be (mass per unit time), where the subscript i applies to pipe 1 or pipe 2.

Temperature profiles for the pipes are and where x is the distance along the pipe. Assume a steady state, so that the temperature profiles are not functions of time. Assume also that the only transfer of heat from a small volume of fluid in one pipe is to the fluid element in the other pipe at the same position, i.e., there is no transfer of heat along a pipe due to temperature differences in that pipe. By Newton's law of cooling the rate of change in energy of a small volume of fluid is proportional to the difference in temperatures between it and the corresponding element in the other pipe:

( this is for parallel flow in the same direction and opposite temperature gradients, but for counter-flow heat exchange countercurrent exchange the sign is opposite in the second equation in front of ), where is the thermal energy per unit length and γ is the thermal connection constant per unit length between the two pipes. This change in internal energy results in a change in the temperature of the fluid element. The time rate of change for the fluid element being carried along by the flow is:

where is the "thermal mass flow rate". The differential equations governing the heat exchanger may now be written as:

Since the system is in a steady state, there are no partial derivatives of temperature with respect to time, and since there is no heat transfer along the pipe, there are no second derivatives in x as is found in the heat equation. These two coupled first-order differential equations may be solved to yield:

where , ,

(this is for parallel-flow, but for counter-flow the sign in front of is negative, so that if , for the same "thermal mass flow rate" in both opposite directions, the gradient of temperature is constant and the temperatures linear in position x with a constant difference along the exchanger, explaining why the counter current design countercurrent exchange is the most efficient )

and A and B are two as yet undetermined constants of integration. Let and be the temperatures at x=0 and let and be the temperatures at the end of the pipe at x=L. Define the average temperatures in each pipe as:

Using the solutions above, these temperatures are:

        

Choosing any two of the temperatures above eliminates the constants of integration, letting us find the other four temperatures. We find the total energy transferred by integrating the expressions for the time rate of change of internal energy per unit length:

By the conservation of energy, the sum of the two energies is zero. The quantity is known as the Log mean temperature difference, and is a measure of the effectiveness of the heat exchanger in transferring heat energy.

See also

[edit]
  • Architectural engineering
  • Chemical engineering
  • Cooling tower
  • Copper in heat exchangers
  • Heat pipe
  • Heat pump
  • Heat recovery ventilation
  • Jacketed vessel
  • Log mean temperature difference (LMTD)
  • Marine heat exchangers
  • Mechanical engineering
  • Micro heat exchanger
  • Moving bed heat exchanger
  • Packed bed and in particular Packed columns
  • Pumpable ice technology
  • Reboiler
  • Recuperator, or cross plate heat exchanger
  • Regenerator
  • Run around coil
  • Steam generator (nuclear power)
  • Surface condenser
  • Toroidal expansion joint
  • Thermosiphon
  • Thermal wheel, or rotary heat exchanger (including enthalpy wheel and desiccant wheel)
  • Tube tool
  • Waste heat

References

[edit]
  1. ^ Al-Sammarraie, Ahmed T.; Vafai, Kambiz (2017). "Heat transfer augmentation through convergence angles in a pipe". Numerical Heat Transfer, Part A: Applications. 72 (3): 197–214. Bibcode:2017NHTA...72..197A. doi:10.1080/10407782.2017.1372670. S2CID 125509773.
  2. ^ Sadik Kakaç; Hongtan Liu (2002). Heat Exchangers: Selection, Rating and Thermal Design (2nd ed.). CRC Press. ISBN 978-0-8493-0902-1.
  3. ^ Farzaneh, Mahsa; Forouzandeh, Azadeh; Al-Sammarraie, Ahmed T.; Salimpour, Mohammad Reza (2019). "Constructal Design of Circular Multilayer Microchannel Heat Sinks". Journal of Thermal Science and Engineering Applications. 11. doi:10.1115/1.4041196. S2CID 126162513.
  4. ^ a b Saunders, E. A. (1988). Heat Exchanges: Selection, Design and Construction. New York: Longman Scientific and Technical.
  5. ^ a b "MICROCHANNEL TECHNOLOGY" (PDF). Archived from the original (PDF) on June 4, 2013.
  6. ^ Kister, Henry Z. (1992). Distillation Design (1st ed.). McGraw-Hill. ISBN 978-0-07-034909-4.
  7. ^ Perry, Robert H.; Green, Don W. (1984). Perry's Chemical Engineers' Handbook (6th ed.). McGraw-Hill. ISBN 978-0-07-049479-4.
  8. ^ Air Pollution Control Orientation Course from website of the Air Pollution Training Institute
  9. ^ Energy savings in steam systems Archived 2007-09-27 at the Wayback Machine Figure 3a, Layout of surface condenser (scroll to page 11 of 34 PDF pages)
  10. ^ Coulson, J. & Richardson, J. (1983), Chemical Engineering – Design (SI Units), Volume 6, Pergamon Press, Oxford.
  11. ^ Hewitt G, Shires G, Bott T (1994), Process Heat Transfer, CRC Press Inc, Florida.
  12. ^ Table: Various Types of Gas – Liquid Direct Contact Heat Exchangers (Hewitt G, Shires G & Bott T, 1994)
  13. ^ Kee Robert J.; et al. (2011). "The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger". Applied Thermal Engineering. 31 (11): 2004–2012. doi:10.1016/j.applthermaleng.2011.03.009.
  14. ^ Northcutt B.; Mudawar I. (2012). "Enhanced design of cross-flow microchannel heat exchanger module for high-performance aircraft gas turbine engines". Journal of Heat Transfer. 134 (6): 061801. doi:10.1115/1.4006037.
  15. ^ Moallem E.; Padhmanabhan S.; Cremaschi L.; Fisher D. E. (2012). "Experimental investigation of the surface temperature and water retention effects on the frosting performance of a compact microchannel heat exchanger for heat pump systems". International Journal of Refrigeration. 35 (1): 171–186. doi:10.1016/j.ijrefrig.2011.08.010.
  16. ^ Sarvar-Ardeh, S., Rafee, R., Rashidi, S. (2021). Hybrid nanofluids with temperature-dependent properties for use in double-layered microchannel heat sink; hydrothermal investigation. Journal of the Taiwan Institute of Chemical Engineers. cite journal https://doi.org/10.1016/j.jtice.2021.05.007
  17. ^ Xu, B., Shi, J., Wang, Y., Chen, J., Li, F., & Li, D. (2014). Experimental Study of Fouling Performance of Air Conditioning System with Microchannel Heat Exchanger.
  18. ^ Patent 2,046,968 John C Raisley[dead link] issued July 7, 1936; filed Jan. 8, 1934 [1]
  19. ^ a b c d Patil, Ramachandra K.; Shende, B.W.; Ghosh, Prasanfa K. (13 December 1982). "Designing a helical-coil heat exchanger". Chemical Engineering. 92 (24): 85–88. Retrieved 14 July 2015.
  20. ^ a b Haraburda, Scott S. (July 1995). "Three-Phase Flow? Consider Helical-Coil Heat Exchanger". Chemical Engineering. 102 (7): 149–151. Retrieved 14 July 2015.
  21. ^ US 3805890, Boardman, Charles E. & Germer, John H., "Helical Coil Heat Exchanger", issued 1974 
  22. ^ Rennie, Timothy J. (2004). Numerical And Experimental Studies Of A Doublepipe Helical Heat Exchanger (PDF) (Ph.D.). Montreal: McGill University. pp. 3–4. Retrieved 14 July 2015.
  23. ^ Rennie, Timothy J.; Raghavan, Vijaya G.S. (September 2005). "Experimental studies of a double-pipe helical heat exchanger". Experimental Thermal and Fluid Science. 29 (8): 919–924. doi:10.1016/j.expthermflusci.2005.02.001.
  24. ^ "Cooling Text". Archived from the original on 2009-02-09. Retrieved 2019-09-09.
  25. ^ E.A.D.Saunders (1988). Heat Exchangers:Selection Design And Construction Longman Scientific and Technical ISBN 0-582-49491-5
  26. ^ Hartman, A. D.; Gerdemann, S. J.; Hansen, J. S. (1998-09-01). "Producing lower-cost titanium for automotive applications". JOM. 50 (9): 16–19. Bibcode:1998JOM....50i..16H. doi:10.1007/s11837-998-0408-1. ISSN 1543-1851. S2CID 92992840.
  27. ^ Nyamekye, Patricia; Rahimpour Golroudbary, Saeed; Piili, Heidi; Luukka, Pasi; Kraslawski, Andrzej (2023-05-01). "Impact of additive manufacturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industries". Advances in Industrial and Manufacturing Engineering. 6: 100112. doi:10.1016/j.aime.2023.100112. ISSN 2666-9129. S2CID 255534598. Archived from the original on Feb 4, 2024.
  28. ^ "Small Tube Copper Is Economical and Eco-Friendly | The MicroGroove Advantage". microgroove.net. Archived from the original on Dec 8, 2023.cite web: CS1 maint: unfit URL (link)
  29. ^
    • White, F.M. 'Heat and Mass Transfer' © 1988 Addison-Wesley Publishing Co. pp. 602–604
    • Rafferty, Kevin D. "Heat Exchangers". Gene Culver Geo-Heat Center. Geothermal Networks. Archived from the original on 2008-03-29. Last accessed 17/3/08.
    • "Process Heating". process-heating.com. BNP Media. Archived from the original on Mar 16, 2008. Last accessed 17/3/08.
  30. ^ Wiehe, Irwin A.; Kennedy, Raymond J. (1 January 2000). "The Oil Compatibility Model and Crude Oil Incompatibility". Energy & Fuels. 14 (1): 56–59. doi:10.1021/ef990133+.
  31. ^ Panchal C;B; and Ebert W., Analysis of Exxon Crude-Oil-Slip-Stream Coking Data, Proc of Fouling Mitigation of Industrial Heat-Exchanger Equipment, San Luis Obispo, California, USA, p 451, June 1995
  32. ^ Domestic heating compliance guide : compliance with approved documents L1A: New dwellings and L1B: Existing dwellings : the Building Regulations 2000 as amended 2006. London: TSO. 2006. ISBN 978-0-11-703645-1. OCLC 500282471.
  33. ^ Epstein, Norman (2014), "Design and construction codes", HEDH Multimedia, Begellhouse, doi:10.1615/hedhme.a.000413, ISBN 978-1-56700-423-6, retrieved 2022-04-12
  34. ^ Heat Loss from the Respiratory Tract in Cold, Defense Technical Information Center, April 1955
  35. ^ Randall, David J.; Warren W. Burggren; Kathleen French; Roger Eckert (2002). Eckert animal physiology: mechanisms and adaptations. Macmillan. p. 587. ISBN 978-0-7167-3863-3.
  36. ^ "Natural History Museum: Research & Collections: History". Archived from the original on 2009-06-14. Retrieved 2019-09-09.
  37. ^ Heyning and Mead; Mead, JG (November 1997). "Thermoregulation in the Mouths of Feeding Gray Whales". Science. 278 (5340): 1138–1140. Bibcode:1997Sci...278.1138H. doi:10.1126/science.278.5340.1138. PMID 9353198.
  38. ^ "Carotid rete cools brain : Thomson's Gazelle".
  39. ^ Bruner, Emiliano; Mantini, Simone; Musso, Fabio; De La Cuétara, José Manuel; Ripani, Maurizio; Sherkat, Shahram (2010-11-30). "The evolution of the meningeal vascular system in the human genus: From brain shape to thermoregulation". American Journal of Human Biology. 23 (1): 35–43. doi:10.1002/ajhb.21123. ISSN 1042-0533. PMID 21120884.
  40. ^ "United States Patent 4498525, Fuel/oil heat exchange system for an engine". United States Patent and Trademark Office. Retrieved 3 February 2009.
  41. ^ Croft, John. "Boeing links Heathrow, Atlanta Trent 895 engine rollbacks". FlightGlobal.com. Retrieved 3 February 2009.
  42. ^ Research, Straits (2022-07-06). "Heat Exchanger Market Size is projected to reach USD 27 Billion by 2030, growing at a CAGR of 5%: Straits Research". GlobeNewswire News Room (Press release). Retrieved 2022-07-15.
  43. ^ Kay J M & Nedderman R M (1985) Fluid Mechanics and Transfer Processes, Cambridge University Press
  44. ^ "MIT web course on Heat Exchangers". [MIT].
  • Coulson, J. and Richardson, J (1999). Chemical Engineering- Fluid Flow. Heat Transfer and Mass Transfer- Volume 1; Reed Educational & Professional Publishing LTD
  • Dogan Eryener (2005), 'Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers', Energy Conservation and Management, Volume 47, Issue 11–12, Pages 1478–1489.
  • G.F.Hewitt, G.L.Shires, T.R.Bott (1994) Process Heat Transfer, CRC Press, Inc, United States Of America.
[edit]
  • Shell and Tube Heat Exchanger Design Software for Educational Applications (PDF)
  • EU Pressure Equipment Guideline
  • A Thermal Management Concept For More Electric Aircraft Power System Application (PDF)

 

Driving Directions in Arapahoe County


Driving Directions From Costco Wholesale to Royal Supply South
Driving Directions From Regal River Point to Royal Supply South
Driving Directions From Tandy Leather South Denver - 151 to Royal Supply South
Driving Directions From Colorado Freedom Memorial to Royal Supply South
Driving Directions From Museum of Outdoor Arts to Royal Supply South
Driving Directions From Denver Zoo to Royal Supply South
Driving Directions From Aurora Reservoir to Royal Supply South
Driving Directions From Colorado Freedom Memorial to Royal Supply South
Driving Directions From Colorado Freedom Memorial to Royal Supply South

Reviews for Royal Supply South


View GBP

Frequently Asked Questions

The recommended electrical capacity depends on the specific HVAC units requirements, often specified by the manufacturer. Typically, central air conditioning units require 20-30 amps at 240 volts, while heat pumps may need more depending on size and efficiency.
To determine if your system can support a new unit, check your main panel’s service amperage (usually listed inside the panel door), compare it with the HVAC unit’s specifications, and ensure you have enough spare circuit breaker slots or capacity.
If your existing system lacks capacity, consider upgrading your service panel or adding subpanels. This requires hiring a licensed electrician to assess and perform necessary upgrades safely and comply with local codes.
Yes, mobile homes must adhere to HUD standards and local building codes. These regulations can affect installation practices, equipment choice, and safety considerations. Always consult these guidelines before proceeding with an installation.